
Lab 5	
Stack

Agenda	
•  Line following demo

o Make sure you take a video
o  Submit your video and code on GitHub

•  Team update: this is the week you
can vote out a team member
•  Intro to stack and switch
•  Project introduction

Stack	
•  Used in manipulating arbitrarily large

collections of objects.
•  A stack is a collection that is based on

the last-in-first-out (LIFO) policy.
•  We name the stack insert method
push(), and the stack remove
operation pop()	

•  We also have a method to test
whether the stack is empty.

STACK API	

How it works	

How to use?	
•  Import

import java.util.Stack;

•  Declaration:
Stack<Object> var_name = new Stack<Object>();

o  If we want a stack of int:
Stack<Integer> path = new Stack<Integer>();

•  Usage
 path.push(0); //put value 0 on stack

int top_value = path.peek(); //get the value at the top of the stack
path.pop(); //remove top value from stack

import java.util.Stack;

public class StackDemo {

 public static void main(String[] args) {
//Declare a stack that holds int data type
Stack<Integer> path = new Stack<Integer>();
System.out.println("Empty stack : " + path.isEmpty());
path.push(1); //put 1 on the stack
System.out.println("Stack : " + path);
path.push(2); //put 2 on the stack
System.out.println("Stack : " + path);
path.push(3); //put 3 on the stack
System.out.println("Stack : " + path);
int top_value = path.peek(); // should be 3
System.out.println("At the top of the stack : " + top_value);
while(!path.isEmpty()){
 path.pop(); //take the top element out
 System.out.println("Stack after pop: " + path);
}

 }
}

Empty	stack	:	true	
Stack	:	[1]	
Stack	:	[1,	2]	
Stack	:	[1,	2,	3]	
At	the	top	of	the	stack	:	3	
Stack	after	pop:	[1,	2]	
Stack	after	pop:	[1]	
Stack	after	pop:	[]	

Example	

Switch Statement	
switch(expression)
{

case value1:{
// statements
break;

}
case value2:{

// statements
break;

}
default:{

// statements
break;

}

}

Stack and Switch Project	
•  Let’s assume that for each value we

pushed on the stack there is an
equivalent action we want to do:
o  1: move forward 10
o  2: turn left
o  3: turn right

•  How to execute those commands?

while(!path.isEmpty()){
 top_value = path.peek();
 path.pop();

switch(top_value)
{

case 1:{ //if at the top of the stack the value is 1 move 10
pilot.travel(10);
break;

}
case 2:{ //if at the top of the stack the value is 2 rotate 90

pilot.rotate(90);
break;

}
case 3:{ //if at the top of the stack the value is 3 rotate -90

pilot.rotate(-90);
break;

}
default:{ //default action: stop

pilot.stop();
break;

}
}

}

Project Description	
•  The problem to be solved is a maze navigation

problem
•  You will be given a maze with a starting cell and a

goal cell.
•  Your job is to come up with a strategy and

implement the corresponding algorithm so that your
robot will go from the starting cell to the goal cell,
acknowledge that it reached the goal cell with
some sort of action, and then make its way back to
the starting cell without making a wrong decision.

Maze Specification	
•  The maze can be described as a 5 x 4 grid of cells where each

cell is 11.5 inches x 11.5 inches.
•  There are 3 types of cells:

o  The floor cells contain a black line going through the center of the cell leading to the
next cell.

o  The starting cell will be empty.
o  The goal cell is covered with aluminum foil.
o  The intersections are marked with a red color tape.

•  Your robot will begin in the starting cell.
•  Once your robot has reached the goal cell, it should

acknowledge that it has reached the endpoint by performing
some action (beeping, making a specific move, print
something to the screen, etc.). Then the timer will start to
record how long it takes to return to the start cell.

•  There is no limit to the number and place of T-junctions and
corners. Also, there may be dead-ends.

